Baricentro Blog

Inicio » Acontecimientos de la física y la matemática » Sucintos comentarios sobre entes matemáticos interesantes (IX): espacios de configuración

Sucintos comentarios sobre entes matemáticos interesantes (IX): espacios de configuración

Archivos

Únete a otros 17 seguidores

Visitas

Sígueme en Twitter

términos de uso

Licencia de Creative Commons
.

Blog Stats

  • 118,440 hits

Los sistemas mecánicos (y otros sistemas físicos) que son especialmente interesantes se modelizan encuadrados en un marco global que supone la generalización de las coordenadas locales y que con frecuencia se reconoce como espacios curvos, que en sentido ampliado se designan con la expresión espacios de configuración.

Los matemáticos enseñan que los espacios de configuración son indisociables con la modelización de un sistema del cual nos interesan sus propiedades globales. En ese sentido, la estructura matemática de pensamiento proponen que es necesario que las coordenadas locales han de cumplir unas condiciones para resultar útiles, lo que en sentido físico más tosco podríamos enunciar como que sean adecuadas o cómodas, un problema se ve mejor si se observa desde una posición adecuada. En esta situación hay que tener en cuenta y conjugar las necesidades de espacios de dimensión infinita que se presentan en muchos problemas de la física.

Como ejemplo de herramientas interesantes que es conveniente manejar con soltura para moverse en espacios de configuración con solvencia son inevitables las aplicaciones diferenciales (entre espacios de configuración). Piense el lector en los espacios vectoriales que tratados con las herramientas propias de los espacios de configuración conducen a las coordenadas curvilíneas, así algunos problemas geométricos se ven muy bien desde esta perspectiva (esferas, toros… cuestiones de geometría proyectiva), si se consideran las coordenadas clásicas y algunos casos que pensamos como prototípicos de la mecánica en los cuales estos son los espacios de configuración. Hay bastantes ejemplos muy bonitos y muy útiles, cabe citar el de los grupos de rotación de la mecánica del sólido que se mueve en torno a un punto, los cuales conllevan una geometría muy rica asociada a un sólido alrededor de un punto fijo, la idea de spin procede de las parametrizaciones clásicas de Euler y Cayley Klein para este caso.

Matemáticamente un espacio de configuración es un espacio topológico separado, en el que cualquier punto está rodeado de una bola abierta homeomorfa a un espacio vectorial; en definitiva, simplificando cabría decir que la información que proporcionan los espacios de configuración sobre los espacios mecánicos es la de todas las posiciones posibles y la dimensión de la variedad diferenciable que llevan asociados identifican los grados de libertad.

Mi propuesta en esta nota se relaciona con la voluntad constante que me anima a señalar al lector que pierda el miedo a adentrarse por caminos no trillados, lo fácil suele cansar antes y es de una belleza que se marchita pronto, en la enjundia de los libros buenos de cálculo variacional se encuentra más emoción y hermosura que en cualquier simplificación rápida… esa es la opinión que apoyo


1 comentario

  1. Rosa M Herrera dice:

    Reblogueó esto en Baricentro Blog.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: